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Abstract 

Autophagy proteins (ATGs) play a vital role in the human body, and abnormalities in ATGs 

degradation have been linked to various illnesses, including neurological diseases, 

cancer, and cardiovascular disease. Therefore, accurately predicting ATGs from a large 

pool of non-ATGs is a pressing task in the post-genome era. To address this issue, we 

have developed a novel computational model called ATG-Pred to discriminate ATGs from 

non-ATGs in this study. Initially, we employed the residue pairwise energy content to 

encode the protein sequences. Furthermore, to get important information, both auto- 
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covariance and cross-covariance were used. To remove irrelevant and redundant 

characteristics, we used the analysis of variance (ANOVA) approach. After that, the 

features that were chosen were fed into a support vector machine so that it could be 

used to distinguish between ATGs and non-ATGs. In the jackknife test, our method 

achieved classification accuracies of 95.17% and 96.50% on the training and test 

dataset, respectively. Moreover, compared to current state-of-the-art methods, our 

proposed approach has shown enhanced classification performance, confirming its 

efficacy in identifying ATGs. For the convenience of academic use, we have made the 

codes and datasets used in our study available at (Link 1). 

 

Keywords  Autophagy proteins, residue pairwise energy content, auto- and cross-

covariance, support vector machine, jackknife test 

 

1. Introduction 

Autophagy, a crucial cellular process that maintains 

cell homeostasis and regulates cellular energy 

metabolism [1], plays a pivotal role in various 

biological process. Dysfunctions in autophagy have 

been linked to some serious illnesses, such as 

neurodegenerative diseases, cancer, and aging [2-5]. 

Importantly, the crucial role of autophagy in 

biomedical science was acknowledged by the Nobel 

Prize in Physiology or Medicine in 2016 [6]. Many 

studies have emphasized the role of various autophagy 

proteins (ATGs) in regulating autophagy. For example, 

ATG9, the sole known ATG membrane protein, 

alongside ATG2 and ATG15, forms a recycling system 

that provides lipid membranes necessary for 

autophagosome production and growth [7, 8]. 

Consequently, distinguishing ATG proteins from non-

ATGs proteins has become an urgent task in the post-

genome era. While experimental methods are 

considered the most reliable ways to unveil the 

biological functions of ATGs, they can be time-

consuming and expensive. Accordingly, in recent 

years, machine learning approaches have gained 

attention due to their efficiency and convenience. In 

the bioinformatics area, several computational models 

have been developed for exploring peptides, proteins, 

DNA, and RNA [9-21].  

 

In an effort to discriminate ATGs from non-ATGs, Jiao 

and colleagues constructed the first machine learning 

model called ATGPred-FL to study this issue [22]. 

This predictor employed three different feature 

methods to encode protein sequences, namely amino 

acid composition features, physicochemical property-

based features, and sequence order-based features. To 

enhance the informative nature of probability features, 

a feature learning method was used. Furthermore, a 

two-step feature selection strategy was used to select 

the best feature subset, with support vector machine 

serving as the classifier for ATGs identification. It was 

noted that there were 94.40% and 90.50% 

classification accuracies for each of the training and 

test dataset, respectively, for which this predictor was 

able to do so.  

 

While ATGPred-FL has shown encouraging results in 

predicting ATGs, there are still some unresolved 

difficulties that need to be solved in future studies. One 

https://figshare.com/articles/online_resource/ATG-Pred/21078670


 

such issue is the lack of consideration for correlation 

attributes among different features in ATGPred-FL. To 

tackle this challenge, our study introduces a feature 

fusion algorithm called similarity network fusion 

(SNF) to integrate diverse features. To determine the 

optimal feature combination, we implement the 

analysis of variance (ANOVA) approach. These 

chosen features are then utilized as input for the 

support vector machine to distinguish between ATGs 

and non-ATGs. To further illustrate the proposed 

method, we have included (Figure 1), which provides 

a visual representation of the process. In the next 

sections, we shall give a full explanation of each 

component depicted in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: The flowchart of the proposed method. 

 

2. Materials and Methods 

2.1. Datasets 

 

Using the same dataset as in a previous work [22], we 

performed this work. With the same data used in this 

way, we were able to directly compare the 

performance of our proposed method with that of the 

state-of-the-art method to the current one. To ensure a 

rigorous evaluation of our developed model, we 

divided the dataset into training and test datasets. 

There were 393 positive samples (i.e., ATGs) and 393 

negative samples (i.e., non-ATGs), in the training 

dataset. Conversely, the test dataset consists of 200 

samples, with 100 positive samples and an equal 

number of negative samples. The positive samples 

were collected from the Universal Protein Knowledge 

Base (UniProtKB) [23], while the negative samples 

were obtained from the protein family database 

(PFAM) [24]. To ensure diversity in the dataset, we 

ensured that any two sequences within the same 

subgroup had no more than 85% sequence identify, 

which was achieved using the CD-HIT toolbox [25].  

 

2.2. Feature Representation 

 

In this study, we utilized the residue pairwise energy 

content matrix (RECM) [26] to extract informative 

classification features from the protein sequences. The 

RECM was calculated by using least squares 

regression to fit the residue pairs of the tertiary 



 

structure of the 785 proteins to main sequence of 674 

proteins, which was obtained by the RECM. The 

RECM has demonstrated its effectiveness in protein 

and peptide prediction [27, 28]. Based to the concept, 

the RECM is a 20×20 matrix derived from 

experimental techniques. Therefore, a protein with L 

amino acids can be effectively represented as follows: 

 

𝑅𝐸𝐶𝑀 − 𝑇 = [

𝑝1,1 𝑝1,2 ⋯ 𝑝1,20
𝑝2,1 𝑝2,2 ⋯ 𝑝2,20
⋮ ⋮ ⋮ ⋮
𝑝𝐿,1 𝑝𝐿,2 ⋯ 𝑝𝐿,20

]                 (1) 

 

where the i-th row in RECM-T matrix is the 

corresponding elements of i-th residue in the RECM 

matrix. For example, let’s examine a protein sequence 

P, which is comprised of the amino acids ‘ARNGG’. 

In this case, we would choose the corresponding row 

of ‘A’, ‘R’, ‘N’, ‘G’, ‘G’ from the RECM matrix. By 

doing so, we obtain a 5×20 matrix that effectively 

represents the sequence. 

 

Next, it is crucial to extract useful information from 

this matrix for the classification task. In this study, we 

employed auto- and cross-covariance to select 

discriminative features. The auto-covariance (AC), in 

particular, can be expressed in the following 

mathematical form [29]. 

 

𝐴𝐶𝑗,𝜆 =
1

𝐿−𝜆
∑ (𝑝𝑖,𝑗 −
𝐿−𝜆
𝑖=1 𝑝𝑗)(𝑝𝑖+𝜆,𝑗 − 𝑝𝑗)                (2) 

 

where 𝑝𝑗 =
1

𝐿
∑ 𝑝𝑖,𝑗
𝐿
𝑖=1 . 

 

Analogously, the cross-covariance (CC) can be 

mathematically represented as follows: 

 

 

 

𝐶𝐶𝑖1,𝑖2,𝜆 =
1

𝐿−𝜆
∑ (𝑝𝑖1,𝑗 −
𝐿−𝜆
𝑖1,𝑖2=1

𝑝𝑖1)(𝑝𝑖2,𝑗+𝜆 − 𝑝𝑖2) (𝑖1 ≠ 𝑖2)           (3) 

 

Indeed, the selection of parameter λ plays a vital role 

in capturing valuable information and obtaining 

reliable results. To cover a variety of options and to 

guarantee thorough coverage of helpful information 

from the matrix, in this paper, we took into 

consideration three different values for λ, namely 10, 

15, and 20. In order to fully leverage the correlation 

information among different features, we incorporated 

the similarity network fusion algorithm [30]. This 

algorithm enabled us to integrate the features obtained 

from AC and CC for each value of λ. Consequently, 

three different feature matrices were generated, 

denoted as W1, W2 and W3, and corresponding to the λ 

values of 10, 15, and 20, respectively. According to the 

concept of SNF, a sparse matrix was initially obtained 

for Wi(i= 1, 2, 3), and it can be defined as follows: 

 

𝑆 𝑖(𝑢, 𝑣) = {
𝑊 𝑖(𝑢, 𝑣), 𝑖𝑓𝑣 ∈ 𝛿𝑢
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                        (4) 

 

where u and v represent two different rows in the 

feature matrix Wi, and δu denotes the set of K nearest 

neighbors of u. The next step involves integrating the 

different features using an iterative approach, which 

can be calculated using the following formula: 

 

(𝑊 𝑖)𝑀+1 = 𝑆 𝑖 ×
∑ (𝑊𝑗)𝑀𝑁
𝑗=1,𝑗≠𝑖

𝑁𝑢𝑚
× (𝑆 𝑖)𝑇                (5) 

 

where (WJ)M represents the updated matrix Wi after M 

iterations, Num refers to the number of matrices used 

for fusion, and in this study, the value of Num is 3. The 

notation T denotes matrix transposition. After the 

iterative process, we obtain the fused matrix by 

averaging the Num matrices as follows: 



 

𝑊 =
1

𝑁𝑢𝑚
∑ 𝑊 𝑖𝑁
𝑖=1                            (6) 

 

2.3. Feature Selection 

 

In situations where the number of features exceeds the 

number of samples, noise, irrelevant information, and 

redundant features may be present, potentially 

impacting performance. To mitigate these issues, we 

adopted a widely-used feature selection approach 

known as the analysis of variance [31-34] to identify 

the most discriminative features. The following is the 

definition given to the F value of the k-th feature [31]: 

 

𝐹𝑘 =
𝑠𝐵
2 (𝑘)

𝑠𝑊
2 (𝑘)

                             (7) 

 

where 𝑠𝐵
2(𝑘) indicates the sample variance between 

groups and 𝑠𝑊
2 (𝑘) represents the sample variance 

within groups. The following formula can be used to 

get these values: 

 

𝑠𝐵
2(𝑘) =

1

𝑑𝑓𝐵
∑ 𝑛𝑖 (

∑ 𝑓𝑖𝑗(𝑘)
𝑛𝑖
𝑗=1

𝑛𝑖
−
∑ ∑ 𝑓𝑖𝑗(𝑘)

𝑛𝑖
𝑗=1

𝐾𝐾
𝑖=1

∑ 𝑛𝑖
𝐾𝐾
𝑖=1

)

2

𝐾𝐾
𝑖=1          (8) 

 

𝑠𝑊
2 (𝑘) =

1

𝑑𝑓𝑊
∑ ∑ (𝑓𝑖𝑗 (𝑘) −

∑ ∑ 𝑓𝑖𝑗(𝑘)
𝑛𝑖
𝑗=1

𝐾𝐾
𝑖=1

∑ 𝑛𝑖
𝐾𝐾
𝑖=1

)
𝑛𝑖
𝑗=1

𝐾𝐾
𝑖=1

2

           (9) 

 

In this context, dfB = KK-1 and dfW = N-KK, KK 

indicates the number of groups, while N represents the 

total number of samples. Fij (k) represents the 

frequency of the k-th feature in the j-th sample of the 

i-th group. Meanwhile, while simultaneously ni 

indicating the total number of samples contained in the 

i-th group.  

 

2.4. Support Vector Machine  

 

In a number of biological researches, including 

proteins, peptides, DNA, and RNA [35-38], support 

vector machine is a potent machine learning algorithm 

with success. The core principle of SVM involves 

transforming raw data into a high dimensional feature 

space, where it aims to identify a hyper-plane that 

maximizes the margin to effectively separate samples 

from different classes. In the study, we implemented 

SVM with a radial basis kernel function (RBF) to 

perform the experiments. The choice of RBF kernel is 

based on the suitability of SVM in addressing small 

sample size issues, which is particularly relevant in our 

study.  

 

2.5. Performance Evaluation 

 

Accuracy (Acc), sensitivity (Sn), specificity (Sp), and 

Matthew’s correlation coefficient (MCC) were the 

four most often used metrics in the binary 

classification task to assess the performance of our 

classification model. These definition of these metrics 

are as follows [12, 39-42]. 

 

{
  
 

  
 𝑆𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100%

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100%

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)

        (10) 

 

where TP is true positive, FP is false positive, TN is 

true negative, and FN is false negative. Additionally, 

to assess the overall performance, we calculated the 

area under the receiver operating characteristic (ROC) 



 

curve (AUC), which serves as a primary quantitative 

indicator.  

 

3. Results and Discussion 

3.1. Parameters Setting 

 

In SVM with RBF, there are two parameters that need 

to be considered: the regularization parameter C and 

kernel parameter γ. To determine the optimal 

combination of these two parameters, we employed a 

grid search strategy. For parameter C, there were 

between 2-5 and 215 in the search space, with a step size 

of 22. Similarly, the search space for parameter γ 

ranged from 2-15 to 23, with a step size of 2-2. Following 

a comprehensive review process, we determined that 

following parameters were used to get the best 

classification accuracy, these were set as follows: 

 

{
𝐶 = 21, 𝛾 = 2−1, 𝑓𝑜𝑟𝑡ℎ𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝐶 = 23, 𝛾 = 21, 𝑓𝑜𝑟𝑡ℎ𝑒𝑡𝑒𝑠𝑡𝑑𝑎𝑡𝑎𝑠𝑒𝑡
          (11) 

 

3.2. Sequence Analysis 

 

Figure 2 illustrated the discrepancy in amino acid 

frequencies between ATGs and non-ATGs sequences. 

By comparing the two groups, we see a considerable 

variation in the preferences of these two groups. For 

instance, non-ATGs exhibit a higher abundance of 

alanine and glycine, while ATGs display a greater 

prevalence of leucine and serine. These observations 

provide valuable insights that may serve as important 

clues in studying ATGs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: Comparing the frequencies of amino acids between ATGs and non-ATGs sequences. 

 

3.3. Classification Performance 

 

Table 1 presents the classification results of the 

proposed method on the training and test datasets 

using jackknife test, while (Figure 3) displays the 

corresponding ROC curves. The table displays 

encouraging classification outcomes obtained through 

the proposed method. Specifically, the classification 

accuracy reached 95.80% and 97.00% on the training 

and test dataset, respectively. Additionally, the 

proposed method also obtained satisfactory results for 

the other four metrics.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3: The ROC curves of the proposed method on training and test dataset. 

 

TABLE 1: The proposed method’s classification performance on the training and test datasets. 

Dataset Acc (%) Sn (%) Sp (%) MCC AUC 

Training 

Test 

95.80 

97.00 

92.11 

96.00 

99.49 

98.00 

0.9185 

0.9402 

0.9768 

0.9954 

 

3.4. Feature Visualization by t-SNE 

 

In this study, we employed a feature fusion strategy to 

integrate three types of features, and the ANOVA was 

utilized to select discriminative features. To verify the 

effectiveness of these selected features in classifying 

ATGs from non-ATG, t-SNE visualization was 

conducted. Figure 4 illustrates the distribution of 

feature space between positive and negative samples 

in a two-dimensional context. It can be seen from this 

figure that there was obvious separation between the 

distribution of positive and negative samples, this is 

not difficult to find. It may partly explain the powerful 

ability of our method in predicting ATGs as listed in 

(Table 1).  

 

3.5. Influence of Parameter K 

 

The choice of the number of neighbors K has a 

significant impact on the performance of SNF 

algorithm and subsequently influences the 

classification performance. To determine the optimal 

value of K for our classification task, we tested a range 

of values from 1 to 20. Figure 5 displays the 

classification results corresponding to different values 

of K. It is evident from this figure that varying values 

of K result in distinct classification accuracies. To 

strike a balance between the classification 

performance on the training and test dataset, we 

selected the value of K as 13 in current study.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4: T-distribution stochastic neighbor embedding (t-SNE) distribution of positive and negative samples on 

a) training and b) test datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5: The classification accuracy of different K. 



 

3.6. Classification Performance of Different λ 

Values 

 

In terms of the amount of features, the value of λ is 

very important, which has an effect on the 

performance of the classification. To obtain as much 

information as possible, in this paper, we studied three 

different λ values: 10, 15 and 20. In order to 

investigate the performance of these various values in 

this subsection, we conducted additional experiments. 

Figure 6 shows the classification results for each λ 

value. Clearly, it can be observed that different λ 

values lead to distinct classification outcomes, both on 

the training and test dataset. Remarkably, our proposed 

method consistently surpassed the others, delivering 

exceptional classification performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6: The classification results of different λ values. a) Training dataset. b) Test dataset. 

 

3.7. Effect of Feature Selection 

 

The main task of feature selection is in the process of 

eliminating redundant and irrelevant information, 

which can be used to enhance the classification 

performance. In this research, we employed the 

ANOVA feature selection approach to pinpoint the 

most discriminative features. Additionally, we 



 

compared ANOVA with other commonly used feature 

selection approaches, including F-score [43-47], 

Fisher [48, 49], and t-test [50]. The outcomes of these 

methods can be found in (Table 2). Table 2 shows that 

different feature selection approaches produce 

different kinds of classification performances. In 

comparison to the other approaches, ANOVA 

consistently achieved superior classification 

performance in terms of Acc, Sn, Sp, MCC, and AUC 

both on the training and test datasets. 

 

TABLE 2: Classification performance of different feature selection methods.  

Dataset Feature selection Acc (%) Sn (%) Sp (%) MCC AUC 

Training 

 

 

 

ANOVA 95.80 92.11 99.49 0.9185 0.9768 

Fisher 91.35 91.86 90.84 0.8270 0.9654 

F-score 76.59 87.79 65.39 0.5457 0.7786 

t-test 86.01 86.26 85.75 0.7201 0.8700 

Test ANOVA 97.00 96.00 98.00 0.9402 0.9954 

Fisher 93.50 99.00 88.00 0.8753 0.9629 

F-score 94.00 97.00 91.00 0.8816 0.9476 

t-test 90.00 83.00 97.00 0.8080 0.9294 

 

3.8. Classification Performance of Different 

Classifiers 

 

The decision made by the classifier has a big impact 

on the model’s classification results. In this study, we 

utilized SVM as the classifier for our experiments. 

Nevertheless, a lot of different machine learning 

algorithms have been used extensively in a variety of 

investigations, and other classifiers were used in our 

additional tests to examine the classification 

performance. Other classifiers included K nearest 

neighbor (KNN) [16, 43, 51], Decision Tree (DT) [52], 

Naïve Bayes (NB) [43, 52, 53], and Random Forest 

(RF) [13, 16, 43, 52, 53]. 

 

In the KNN algorithm, we compared two distance 

metrics: Euclidean distance (KNN-E) and cosine 

distance (KNN-C), using a neighbor count of 1. The 

RF algorithm involved using 300 decision trees. The 

Naïve Bayes and DT algorithms use Matlab 2015b 

default parameters. The outcomes of these 

experiments are shown in (Table 3). It can be seen 

from (Table 3) that SVM performed the best in both 

datasets and performed better than the other 

classifiers. In addition, SVM demonstrated a more 

consistent performance in comparison to the other 

algorithms. For example, while KNN achieved more 

than 90% classification accuracy on the training 

dataset, its accuracy on the test dataset just slightly 

above 70%.  

TABLE 3: Classification results of different classifiers. 

Dataset Classifier Acc (%) Sn (%) Sp (%) MCC 

Training 

 

 

 

 

KNN-E 91.86 87.28 96.44 0.8407 

KNN-C 91.09 86.77 95.42 0.8250 

NB 93.13 89.57 96.69 0.8648 

DT 82.32 84.22 80.41 0.6468 

RF 89.82 88.55 91.09 0.7967 



 

 SVM 95.80 92.11 99.49 0.9185 

Test KNN-E 71.00 42.00 100.00 0.5156 

KNN-C 77.50 57.00 98.00 0.6030 

NB 90.00 82.00 98.00 0.8104 

DT 74.50 74.00 75.00 0.4900 

RF 74.00 77.00 71.00 0.4809 

SVM 97.00 96.00 98.00 0.9402 

 

3.9. Convergence of ATG-Pred Model 

 

In this subsection, we performed additional analyses 

on the convergence of our proposed model. Figure 7 

shows how the number of iterations increases of 

classification performance. From this figure, we can 

observe that the classification performance tends to 

stabilize around 20 iterations. It is shown that there are 

very few iterations in our model when it comes to 

convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7: The classification performance of different iterations. a) Training dataset. b) Test dataset. 

 

3.10. Comparison of SNF with a Hybrid Model 

 

In previous studies, researchers often concatenated 

different feature descriptors to achieve feature fusion 

without considering the correlation among these 

features. Nevertheless, this approach overlooks the 

potential benefits of incorporating correlation 

information. In this study, we addressed this limitation 

by adopting the SNF algorithm to integrate different 

kinds of features. Figure 8 compares the classification 

results obtained through feature concatenation and the 

SNF algorithm. It is clear that a substantial gap exists 

between the two strategies. The SNF algorithm used in 

this work outperformed the direct concatenation of 

different features in terms of classification 

performance. This suggests that considering the 

correlation information among distinct features 

significantly enhances the classification task.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8: Classification performance of different feature fusion strategies. a) Training dataset. b) Test dataset. 

 

3.11. Comparison with the Existing Method 

 

To further highlight the efficacy of our suggested 

strategy, we ran a comparison with the state-of-the-art 

approach. In the previous study, the model was 

evaluated using a 10-fold cross-validation test. 

Additionally, we used the same 10-fold cross-

validation test to assess our approach in order to 

guarantee a fair comparison. A summary of the 

classification results is shown in (Table 4), and the 

mean values are shown as the metrics. It is evident 

from (Table 4) that ATG-Pred achieved superior 



 

classification performance both on the training and test 

dataset, particularly for the test dataset. For instance, 

the Acc and MCC for ATGPres-FL on the test dataset 

were reported as 90.50% and 0.810, respectively. In 

contrast, the proposed approach obtained higher 

values of 96.70% and 0.934 for these metrics on the 

corresponding indexes. Furthermore, the sensitivity 

and specificity of our method were also better than 

others. The efficacy of our suggested strategy for 

autophagy protein prediction is shown by these data.  

 

TABLE 4: A comparison of the proposed method with the existing approach.  

Dataset Predictor Acc (%) Sn (%) Sp (%) MCC 

Training 

 

ATG-Pred-FL [22] 94.40 94.15 94.66 0.888 

ATG-Pred 95.78 92.11 99.44 0.918 

Test ATG-Pred-FL [22] 90.50 89.00 92.00 0.810 

ATG-Pred 96.70 95.30 98.10 0.934 

 

3.12. Case Study 

 

To further assess the efficacy of the proposed ATG-

Pred model, we conduct experiments on a set of new 

ATGs from un-reviewed annotations in UniProtKB. 

These data were collected from a prior study [22], and 

they can be downloaded from the following link (Link 

2). Figure 9 shows the results of these tests. From this 

figure, we can find that based on the predictions made 

by our ATG-Pred model, approximately 91.74%, 

92.11%, 91.96%, 94.78%, and 99.13% of the un-

reviewed protein sequences from Bovine, Human, 

Mouse, Rat, and Zebrafish, respectively, are predicted 

to be ATGs. The efficacy of our model in precisely 

anticipating ATGs was shown by these results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9: The prediction results of ATG-Pred on un-reviewed ATGs sequences. 
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4. Conclusion 

 

In this study, we proposed a support vector machine 

based model, called ATG-Pred, for the identification 

of ATGs using the residue pairwise energy content. We 

chose an appropriate subset of features using the 

ANOVA feature selection method, which finally 

improved the model’s classification performance. 

Through extensive experiments using the jackknife 

test, our proposed method achieved high classification 

accuracies of 95.80% and 97.00% on the training and 

test datasets, respectively. Additionally, we evaluated 

the performance of ATG-Pred against existing 

predictor, and the results showed that our proposed 

method surpassed the state-of-the-art approach. This 

confirms the effectiveness of ATG-Pred in accurately 

identifying ATGs. To facilitate academic use, we have 

made the codes and datasets used in this study 

available at the following link (Link 3). 

 

While ATG-Pred exhibited improved classification 

performance compared to prior study, it is important to 

acknowledge the limitations of our work. The first one 

is that we solely used the RECM to denote protein 

sequences. The RECM only capture one side of 

information about proteins. There are many kinds of 

characteristics can be used as features to denote 

protein. Previous studies have reported that 

incorporating many types of information, such as 

physicochemical property and evolutionary 

information, may enhance the performance of 

classification model. Therefore, future work should 

explore the integration of various types of information 

to further improve the ATG prediction accuracy of our 

model. Another is that we just used the correlation 

between two different properties, it is unknown 

whether interactions among more properties may 

benefit for improving the classification performance, 

we will explore this issue in the future. 
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